795-nm high-temperature and high-power operating vertical-cavity surface-emitting laser and application in atomic gyroscope
Wuli Xuebao/Acta Physica Sinica, ISSN: 1000-3290, Vol: 71, Issue: 13
2022
- 5Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations5
- Citation Indexes5
- CrossRef2
- Captures1
- Readers1
Article Description
Single-transverse mode vertical-cavity surface-emitting lasers (VCSELs) are preferable optical sources for small low-power atomic sensors, including chip-scale atomic clocks, magnetometers, and gyroscopes. When VCSEL is used as the pump source of nuclear magnetic resonance gyroscope, it is required to have high single-mode output power. Oxide aperture diameter must be sufficiently small (< 4 µm) in a conventional oxide-confined VCSEL to support the fundamental mode alone. However, high series resistance (typically > 200 W for GaAs-based VCSEL) from the small aperture limits its output power and reliability due to excessive current-induced self-heating and high current density. It is a very attractive idea to achieve high power operation of an intrinsic single mode VCSEL based on a large oxide aperture by means of epitaxial structure design without introducing additional process steps. Transverse optical confinement in oxide-confined VCSELs crucially depends on the thickness of oxide layer and its position relative to standing wave. Modifying the structure reduces the overlap between the oxide layer and the standing wave as well as the difference in effective refractive index between core and cladding of the VCSEL, thereby reducing the number of transverse modes andincreasing the mode extension beyond oxide aperture. A 795-nm VCSEL is designed and fabricated based on this concept. A cavity structure of VCSEL with gain-cavity detuning of ~10.8 nm at room temperature is adopted in this paper. The effective refractive index and the standing wave distribution of the VCSEL are calculated, and the position of the oxide layer in the epitaxial structure of the VCSEL is optimized according to the standing wave distribution. Finally, the structure with low effective refractive index difference is obtained. The proposed device achieves high single-mode operation of 4.1 mW at 80 ℃, SMSR of 41.68 dB, and OPSR of 27.4 dB. The VCSEL is applied to a nuclear magnetic resonance gyroscope (NMRG) system as pump source due to its excellent device performance, and satisfactory test results are obtained. This paper presents a new method of designing single-mode high power VCSEL and its feasibility is also demonstrated through experimental results.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85135137128&origin=inward; http://dx.doi.org/10.7498/aps.71.20212422; https://wulixb.iphy.ac.cn/article/doi/10.7498/aps.71.20212422; https://dx.doi.org/10.7498/aps.71.20212422; http://sciencechina.cn/gw.jsp?action=cited_outline.jsp&type=1&id=7266894&internal_id=7266894&from=elsevier
Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know