PlumX Metrics
Embed PlumX Metrics

The Brm-HDAC3-Erm repressor complex suppresses dedifferentiation in Drosophila type II neuroblast lineages

eLife, ISSN: 2050-084X, Vol: 2014, Issue: 3, Page: e01906
2014
  • 52
    Citations
  • 0
    Usage
  • 81
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

The control of self-renewal and differentiation of neural stem and progenitor cells is a crucial issue in stem cell and cancer biology. Drosophila type II neuroblast lineages are prone to developing impaired neuroblast homeostasis if the limited self-renewing potential of intermediate neural progenitors (INPs) is unrestrained. Here, we demonstrate that Drosophila SWI/SNF chromatin remodeling Brahma (Brm) complex functions cooperatively with another chromatin remodeling factor, Histone deacetylase 3 (HDAC3) to suppress the formation of ectopic type II neuroblasts. We show that multiple components of the Brm complex and HDAC3 physically associate with Earmuff (Erm), a type II-specific transcription factor that prevents dedifferentiation of INPs into neuroblasts. Consistently, the predicted Erm-binding motif is present in most of known binding loci of Brm. Furthermore, brm and hdac3 genetically interact with erm to prevent type II neuroblast overgrowth. Thus, the Brm-HDAC3-Erm repressor complex suppresses dedifferentiation of INPs back into type II neuroblasts. © Koe et al.

Bibliographic Details

Koe, Chwee Tat; Li, Song; Rossi, Fabrizio; Wong, Jack Jing Lin; Wang, Yan; Zhang, Zhizhuo; Chen, Keng; Aw, Sherry Shiying; Richardson, Helena E; Robson, Paul; Sung, Wing-Kin; Yu, Fengwei; Gonzalez, Cayetano; Wang, Hongyan

eLife Sciences Organisation, Ltd.

Neuroscience; Biochemistry, Genetics and Molecular Biology; Immunology and Microbiology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know