PlumX Metrics
Embed PlumX Metrics

Structure-based membrane dome mechanism for piezo mechanosensitivity

eLife, ISSN: 2050-084X, Vol: 6
2017
  • 284
    Citations
  • 0
    Usage
  • 360
    Captures
  • 1
    Mentions
  • 4
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    284
  • Captures
    360
  • Mentions
    1
    • Blog Mentions
      1
      • Blog
        1
  • Social Media
    4
    • Shares, Likes & Comments
      4
      • Facebook
        4

Most Recent Blog

Hacia la explicación a escala molecular del sentido del tacto

Un ingeniero diseñaría un sensor mecánico mediante un material piezoeléctrico. En su lugar las células usan canales iónicos mecanosensibles, como Piezo1 y Piezo2, que se abren bajo presión (o tensión) en la membrana de fosfolípidos, permitiendo el paso de iones que producen un impulso nervioso. Se publican en Nature y en eLife sendas estructuras tridimensionales de los canales Piezo1 (humano) y mP

Article Description

Mechanosensitive ion channels convert external mechanical stimuli into electrochemical signals for critical processes including touch sensation, balance, and cardiovascular regulation. The best understood mechanosensitive channel, MscL, opens a wide pore, which accounts for mechanosensitive gating due to in-plane area expansion. Eukaryotic Piezo channels have a narrow pore and therefore must capture mechanical forces to control gating in another way. We present a cryo-EM structure of mouse Piezo1 in a closed conformation at 3.7Å -resolution. The channel is a triskelion with arms consisting of repeated arrays of 4-TM structural units surrounding a pore. Its shape deforms the membrane locally into a dome. We present a hypothesis in which the membrane deformation changes upon channel opening. Quantitatively, membrane tension will alter gating energetics in proportion to the change in projected area under the dome. This mechanism can account for highly sensitive mechanical gating in the setting of a narrow, cation-selective pore.

Bibliographic Details

http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85041357152&origin=inward; http://dx.doi.org/10.7554/elife.33660; http://www.ncbi.nlm.nih.gov/pubmed/29231809; https://elifesciences.org/articles/33660#fig6; http://dx.doi.org/10.7554/elife.33660.016; https://elifesciences.org/articles/33660#fig4; http://dx.doi.org/10.7554/elife.33660.012; https://elifesciences.org/articles/33660#table1; http://dx.doi.org/10.7554/elife.33660.007; https://elifesciences.org/articles/33660#decision-letter; http://dx.doi.org/10.7554/elife.33660.027; https://elifesciences.org/articles/33660#fig3; http://dx.doi.org/10.7554/elife.33660.008; https://elifesciences.org/articles/33660#fig2; http://dx.doi.org/10.7554/elife.33660.003; https://elifesciences.org/articles/33660#abstract; http://dx.doi.org/10.7554/elife.33660.001; https://elifesciences.org/articles/33660#fig1; http://dx.doi.org/10.7554/elife.33660.002; https://elifesciences.org/articles/33660#fig5; http://dx.doi.org/10.7554/elife.33660.014; https://elifesciences.org/articles/33660; https://cdn.elifesciences.org/articles/33660/elife-33660-v2.pdf; https://cdn.elifesciences.org/articles/33660/elife-33660-v2.xml; https://elifesciences.org/articles/33660#fig7; http://dx.doi.org/10.7554/elife.33660.018; https://facultyopinions.com/prime/732284646#eval793563946; http://dx.doi.org/10.3410/f.732284646.793563946; http://dx.doi.org/10.7554/elife.33660.028; https://elifesciences.org/articles/33660#author-response; https://dx.doi.org/10.7554/elife.33660

Guo, Yusong R; MacKinnon, Roderick

eLife Sciences Publications, Ltd

Neuroscience; Biochemistry, Genetics and Molecular Biology; Immunology and Microbiology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know