PlumX Metrics
Embed PlumX Metrics

Chromosome structure in Drosophila is determined by boundary pairing not loop extrusion

eLife, ISSN: 2050-084X, Vol: 13
2024
  • 5
    Citations
  • 0
    Usage
  • 14
    Captures
  • 2
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Most Recent News

Data from Princeton University Broaden Understanding of Genetics (Chromosome structure in Drosophila is determined by boundary pairing not loop extrusion)

2024 AUG 19 (NewsRx) -- By a News Reporter-Staff News Editor at NewsRx Life Science Daily -- New study results on genetics have been published.

Article Description

Two different models have been proposed to explain how the endpoints of chromatin looped domains ('TADs') in eukaryotic chromosomes are determined. In the first, a cohesin complex extrudes a loop until it encounters a boundary element roadblock, generating a stem-loop. In this model, boundaries are functionally autonomous: they have an intrinsic ability to halt the movement of incoming cohesin complexes that is independent of the properties of neighboring boundaries. In the second, loops are generated by boundary:boundary pairing. In this model, boundaries are functionally non-autonomous, and their ability to form a loop depends upon how well they match with their neighbors. Moreover, unlike the loop-extrusion model, pairing interactions can generate both stem-loops and circle-loops. We have used a combination of MicroC to analyze how TADs are organized, and experimental manipulations of the even skipped TAD boundary, homie, to test the predictions of the 'loop-extrusion' and the 'boundary-pairing' models. Our findings are incompatible with the loop-extrusion model, and instead suggest that the endpoints of TADs in flies are determined by a mechanism in which boundary elements physically pair with their partners, either head-to-head or head-to-tail, with varying degrees of specificity. Although our experiments do not address how partners find each other, the mechanism is unlikely to require loop extrusion.

Bibliographic Details

Bing, Xinyang; Ke, Wenfan; Fujioka, Miki; Kurbidaeva, Amina; Levitt, Sarah; Levine, Mike; Schedl, Paul; Jaynes, James B

eLife Sciences Publications, Ltd

Neuroscience; Biochemistry, Genetics and Molecular Biology; Immunology and Microbiology

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know