PlumX Metrics
Embed PlumX Metrics

Optimization of feature extraction for automated identification of heart wall regions in different cross sections

Japanese Journal of Applied Physics, ISSN: 1347-4065, Vol: 53, Issue: 7 SPEC. ISSUE
2014
  • 9
    Citations
  • 0
    Usage
  • 6
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

In most current methods of evaluating the cardiac function based on echocardiography, the heart wall in an ultrasonic image is currently identified manually by an operator. However, this task is very time-consuming and leads to inter- and intraobserver variability. To facilitate the analysis and eliminate operator dependence, automated identification of heart wall regions is essential. We previously proposed a method of automatic identification of heart wall regions using multiple features based on information of the amplitude and phase of the ultrasonic RF echo signal by pattern recognition. In the present study, we investigate a new method of segmenting an ultrasonic image into the heart wall, lumen, and external tissues (includes pericardium) by two-step pattern recognition. Also, parameters in the proposed classification method were examined for application to different cross sections, i.e., long-axis and short-axis views, by considering differences in the motion and echogenicity of the heart walls. Furthermore, moving target indicator (MTI) filtering to suppress echoes from clutters was improved to enhance the separability in the shortaxis view. © 2014 The Japan Society of Applied Physics.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know