Towards the portability of knowledge in reinforcement learning-based systems for automatic drone navigation
PeerJ Computer Science, ISSN: 2376-5992, Vol: 9, Page: e1402
2023
- 2Citations
- 9Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the field of artificial intelligence (AI) one of the main challenges today is to make the knowledge acquired when performing a certain task in a given scenario applicable to similar yet different tasks to be performed with a certain degree of precision in other environments. This idea of knowledge portability is of great use in Cyber-Physical Systems (CPS) that face important challenges in terms of reliability and autonomy. This article presents a CPS where unmanned vehicles (drones) are equipped with a reinforcement learning system so they may automatically learn to perform various navigation tasks in environments with physical obstacles. The implemented system is capable of isolating the agents' knowledge and transferring it to other agents that do not have prior knowledge of their environment so they may successfully navigate environments with obstacles. A complete study has been performed to ascertain the degree to which the knowledge obtained by an agent in a scenario may be successfully transferred to other agents in order to perform tasks in other scenarios without prior knowledge of the same, obtaining positive results in terms of the success rate and learning time required to complete the task set in each case. In particular, those two indicators showed better results (higher success rate and lower learning time) with our proposal compared to the baseline in 47 out of the 60 tests conducted (78.3%).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know