Internet of Things-based sustainable environment management for large indoor facilities
PeerJ Computer Science, ISSN: 2376-5992, Vol: 9, Page: e1623
2023
- 10Citations
- 70Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- Captures70
- Readers70
- 70
- Mentions1
- News Mentions1
- News1
Most Recent News
IOT AND CLOUD COMPUTING SOLUTIONS FOR NEXT-GENERATION AGRICULTURE AND ANIMAL HUSBANDRY
Keywords: IoTs; Cloud computing; CoT; smart gateway; fogging; animal science, farm management INTRODUCTION The future of computing depends on the combination of the IoT and
Article Description
Due to global warming and climate change, the poultry industry is heavily impacted, especially the broiler industry, due to the sensitive immune system of broiler chickens. However, the continuous monitoring and controlling of the farm’s environmental parameters can help to curtail the negative impacts of the environment on chickens’ health, leading to increased meat production. This article presents smart solutions to such issues, which are practically implemented, and have low production and operational costs. In this article, an Internet of Things (IoT) based environmental parameters monitoring has been demonstrated for the poultry farmhouse. This system enables the collection and visualization of crucially sensed data automatically and reliably, and at a low cost to efficiently manage and operate a poultry farm. The proposed IoT-based remote monitoring system collects and visualizes environmental parameters, such as air temperature, relative humidity (RH), oxygen level (O), carbon dioxide (CO), carbon monoxide (CO), and ammonia (NH) gas concentrations. The wireless sensor nodes have been designed and deployed for efficient data collection of the essential environmental parameters that are key for monitoring and decision-making process. The hardware is implemented and deployed successfully at a site within the control shed of the poultry farmhouse. The results revealed important findings related to the environmental conditions within the poultry farm. The temperature inside the control sheds remained within the desired range throughout the monitoring period, with daily average values ranging from 32 °C to 34 °C. The RH showed slight variations monitoring period, ranging from 65% to 75%, with a daily average of 70%. The O concentration exhibited an average value of 17% to 18.5% throughout the monitoring period. The CO levels showed occasional increases, reaching a maximum value of 1,100 ppm. However, this value was below the maximum permissible level of 2,500 ppm, indicating that the ventilation system was effective in maintaining acceptable CO levels within the control sheds. The NH gas concentration remained consistently low throughout the duration, with an average value of 50 parts per million (ppm).
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know