Optic disc and cup segmentation for glaucoma detection using Attention U-Net incorporating residual mechanism
PeerJ Computer Science, ISSN: 2376-5992, Vol: 10, Page: e1941
2024
- 16Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures16
- Readers16
- 16
Article Description
Glaucoma is a common eye disease that can cause blindness. Accurate detection of the optic disc and cup disc is crucial for glaucoma diagnosis. Algorithm models based on artificial intelligence can assist doctors in improving detection performance. In this article, U-Net is used as the backbone network, and the attention and residual modules are integrated to construct an end-to-end convolutional neural network model for optic disc and cup disc segmentation. The U-Net backbone is used to infer the basic position information of optic disc and cup disc, the attention module enhances the model’s ability to represent and extract features of optic disc and cup disc, and the residual module alleviates gradient disappearance or explosion that may occur during feature representation of the neural network. The proposed model is trained and tested on the DRISHTI-GS1 dataset. Results show that compared with the original U-Net method, our model can more effectively separate optic disc and cup disc in terms of overlap error, sensitivity, and specificity.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know