Hybrid mRMR and multi-objective particle swarm feature selection methods and application to metabolomics of traditional Chinese medicine
PeerJ Computer Science, ISSN: 2376-5992, Vol: 10, Page: e2073
2024
- 1Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
- Mentions1
- News Mentions1
- 1
Most Recent News
Researchers at Jiangxi University of Chinese Medicine Release New Data on Traditional Chinese Medicine (Hybrid mRMR and multi-objective particle swarm feature selection methods and application to metabolomics of traditional Chinese medicine)
2024 JUN 17 (NewsRx) -- By a News Reporter-Staff News Editor at Fitness & Wellness Daily -- Investigators discuss new findings in traditional Chinese medicine.
Article Description
Metabolomics data has high-dimensional features and a small sample size, which is typical of high-dimensional small sample (HDSS) data. Too high a dimensionality leads to the curse of dimensionality, and too small a sample size tends to trigger overfitting, which poses a challenge to deeper mining in metabolomics. Feature selection is a valuable technique for effectively handling the challenges HDSS data poses. For the feature selection problem of HDSS data in metabolomics, a hybrid Max-Relevance and Min-Redundancy (mRMR) and multi-objective particle swarm feature selection method (MCMOPSO) is proposed. Experimental results using metabolomics data and various University of California, Irvine (UCI) public datasets demonstrate the effectiveness of MCMOPSO in selecting feature subsets with a limited number of high-quality features. MCMOPSO achieves this by efficiently eliminating irrelevant and redundant features, showcasing its efficacy. Therefore, MCMOPSO is a powerful approach for selecting features from high-dimensional metabolomics data with limited sample sizes.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know