Performance analysis of a millimeter wave MIMO channel estimation method in an embedded multi-core processor
Journal of Supercomputing, ISSN: 1573-0484, Vol: 78, Issue: 12, Page: 14756-14767
2022
- 3Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The emerging Multi-Processor System-on-Chip (MPSoC) technology, which combines heterogeneous computing with the high performance of field programmable gate arrays (FPGA), is a promising platform for a large number of applications, including wireless communications and vehicular technology. In this specific application context, when multiple-input multiple-output (MIMO) scenarios are considered, the system usually has to manage a large number of communication links among sensors and antennas involving different vehicles and users. Millimeter wave (mmWave) communications are one of the key technology enablers toward achieving high data rates in beyond 5G systems (B5G). Communication at these frequency bands usually involves the use of large antenna arrays, often requiring high computational resources. One of the candidate platforms able to manage a huge number of communications is the Xilinx Zynq UltraScale+ EG Heterogeneous MPSoC, which is composed of a dual-core Cortex-R5, a quad-core ARM Cortex-A53, a graphics processing unit (GPU) and a high-end FPGA. This work analyzes the computational performance that requires a recent mmWave MIMO channel estimation algorithm in a platform of this kind. As a first approach, we will focus our work on the performance that can be achieved via the quad-core ARM Cortex-A53. To this end, we will use the libraries for numerical algebra (BLAS and LAPACK). The results show that our reference implementation is able to manage a large MIMO communication system with 256 antennas without exhausting platform resources.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know