Adaptive sparse group LASSO in quantile regression
Advances in Data Analysis and Classification, ISSN: 1862-5355, Vol: 15, Issue: 3, Page: 547-573
2021
- 14Citations
- 20Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
An adaptive lasso
How to build an oracle estimator that knows the truth (with code!) Photo by Pierre Bamin on Unsplash This is my second post on the
Article Description
This paper studies the introduction of sparse group LASSO (SGL) to the quantile regression framework. Additionally, a more flexible version, an adaptive SGL is proposed based on the adaptive idea, this is, the usage of adaptive weights in the penalization. Adaptive estimators are usually focused on the study of the oracle property under asymptotic and double asymptotic frameworks. A key step on the demonstration of this property is to consider adaptive weights based on a initial n-consistent estimator. In practice this implies the usage of a non penalized estimator that limits the adaptive solutions to low dimensional scenarios. In this work, several solutions, based on dimension reduction techniques PCA and PLS, are studied for the calculation of these weights in high dimensional frameworks. The benefits of this proposal are studied both in synthetic and real datasets.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know