Optimal pricing for electricity retailers based on data-driven consumers’ price-response
TOP, ISSN: 1863-8279, Vol: 30, Issue: 3, Page: 430-464
2022
- 3Citations
- 14Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports from University of Carlos III Madrid Add New Data to Findings in Information Technology (Optimal Pricing for Electricity Retailers Based On Data-driven Consumers' Price-response)
2023 DEC 25 (NewsRx) -- By a News Reporter-Staff News Editor at Disease Prevention Daily -- New research on Information Technology is the subject of
Article Description
In the present work, we tackle the problem of finding the optimal price tariff to be set by a risk-averse electric retailer participating in the pool and whose customers are price sensitive. We assume that the retailer has access to a sufficiently large smart-meter dataset from which it can statistically characterize the relationship between the tariff price and the demand load of its clients. Three different models are analyzed to predict the aggregated load as a function of the electricity prices and other parameters, as humidity or temperature. More specifically, we train linear regression (predictive) models to forecast the resulting demand load as a function of the retail price. Then, we will insert this model in a quadratic optimization problem which evaluates the optimal price to be offered. This optimization problem accounts for different sources of uncertainty including consumer’s response, pool prices and renewable source availability, and relies on a stochastic and risk-averse formulation. In particular, one important contribution of this work is to base the scenario generation and reduction procedure on the statistical properties of the resulting predictive model. This allows us to properly quantify (data-driven) not only the expected value but the level of uncertainty associated with the main problem parameters. Moreover, we consider both standard forward-based contracts and the recently introduced power purchase agreement contracts as risk-hedging tools for the retailer. The results are promising as profits are found for the retailer with highly competitive prices and some possible improvements are shown if richer datasets could be available in the future. A realistic case study and multiple sensitivity analyses have been performed to characterize the risk-aversion behavior of the retailer considering price-sensitive consumers. It has been assumed that the energy procurement of the retailer can be satisfied from the pool and different types of contracts. The obtained results reveal that the risk-aversion degree of the retailer strongly influences contracting decisions, whereas the price sensitiveness of consumers has a higher impact on the selling price offered.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know