ODS ferritic steels obtained from gas atomized powders through the STARS processing route: Reactive synthesis as an alternative to mechanical alloying
Nuclear Materials and Energy, ISSN: 2352-1791, Vol: 17, Page: 1-8
2018
- 24Citations
- 17Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Oxide Dispersion Strengthened Ferritic Stainless Steels (ODS FS) are candidate materials for structural components in fusion reactors. Their ultrafine microstructure and the presence of a very stable dispersion of Y-Ti-O nanoclusters provide reasonable fracture toughness, high mechanical and creep strength, and resistance to radiation damage at the operation temperature, up to about 750 °C. An innovative route to produce ODS FS with composition Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 (wt.%), named STARS (Surface Treatment of gas Atomized powder followed by Reactive Synthesis), is presented. This route avoids the mechanical alloying (MA) of the elemental or prealloyed powders with yttria to dissolve the yttrium in the ferritic matrix. In this study, starting powders containing Ti and Y are obtained by gas atomization at laboratory and industrial scale. Then, a metastable Cr- and Fe- rich oxide layer is formed on the surface of the powder particles. During consolidation by HIP the metastable oxide layer at Prior Particle Boundaries (PPBs) dissociates, the oxygen diffuses towards saturated solutions or metallic Ti- and Y-rich particles, and Y-Ti-O nano-oxides (mainly Y 2 TiO 5 ) precipitate in the ferritic matrix. Detailed Microstructural characterization by X-ray Photoelectron Spectroscopy (XPS), X-ray Absorption Spectroscopy (XAS), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) of powders and consolidated materials is presented and correlated with mechanical behaviour.
Bibliographic Details
http://www.sciencedirect.com/science/article/pii/S2352179117301953; http://dx.doi.org/10.1016/j.nme.2018.06.014; http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85051136475&origin=inward; https://linkinghub.elsevier.com/retrieve/pii/S2352179117301953; https://dul.usage.elsevier.com/doi/; https://api.elsevier.com/content/article/PII:S2352179117301953?httpAccept=text/xml; https://api.elsevier.com/content/article/PII:S2352179117301953?httpAccept=text/plain; https://dx.doi.org/10.1016/j.nme.2018.06.014
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know