PlumX Metrics
Embed PlumX Metrics

Bayesian analysis of a queueing system with a long-tailed arrival process

Communications in Statistics: Simulation and Computation, ISSN: 0361-0918, Vol: 37, Issue: 4, Page: 697-712
2008
  • 18
    Citations
  • 0
    Usage
  • 8
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    18
    • Citation Indexes
      18
  • Captures
    8

Conference Paper Description

Internet traffic data is characterized by some unusual statistical properties, in particular, the presence of heavy-tailed variables. A typical model for heavy-tailed distributions is the Pareto distribution although this is not adequate in many cases. In this article, we consider a mixture of two-parameter Pareto distributions as a model for heavy-tailed data and use a Bayesian approach based on the birth-death Markov chain Monte Carlo algorithm to fit this model. We estimate some measures of interest related to the queueing system k-Par/M/1 where k-Par denotes a mixture of k Pareto distributions. Heavy-tailed variables are difficult to model in such queueing systems because of the lack of a simple expression for the Laplace Transform (LT). We use a procedure based on recent LT approximating results for the Pareto/M/1 system. We illustrate our approach with both simulated and real data.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know