Adaptive Importance Sampling: The past, the present, and the future
IEEE Signal Processing Magazine, ISSN: 1053-5888, Vol: 34, Issue: 4, Page: 60-79
2017
- 187Citations
- 86Captures
- 2Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A fundamental problem in signal processing is the estimation of unknown parameters or functions from noisy observations. Important examples include localization of objects in wireless sensor networks [1] and the Internet of Things [2]; multiple source reconstruction from electroencephalograms [3]; estimation of power spectral density for speech enhancement [4]; or inference in genomic signal processing [5]. Within the Bayesian signal processing framework, these problems are addressed by constructing posterior probability distributions of the unknowns. The posteriors combine optimally all of the information about the unknowns in the observations with the information that is present in their prior probability distributions. Given the posterior, one often wants to make inference about the unknowns, e.g., if we are estimating parameters, finding the values that maximize their posterior or the values that minimize some cost function given the uncertainty of the parameters. Unfortunately, obtaining closed-form solutions to these types of problems is infeasible in most practical applications, and therefore, developing approximate inference techniques is of utmost interest.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85032762990&origin=inward; http://dx.doi.org/10.1109/msp.2017.2699226; http://ieeexplore.ieee.org/document/7974876/; http://xplorestaging.ieee.org/ielx7/79/7974707/07974876.pdf?arnumber=7974876; https://ieeexplore.ieee.org/document/7974876/
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know