Thwarting Selfish Behavior in 802.11 WLANs
IEEE/ACM Transactions on Networking, ISSN: 1063-6692, Vol: 24, Issue: 1, Page: 492-505
2016
- 4Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The 802.11e standard enables user configuration of several MAC parameters, making WLANs vulnerable to users that selfishly configure these parameters to gain throughput. In this paper, we propose a novel distributed algorithm to thwart such selfish behavior. The key idea of the algorithm is for stations to react, upon detecting a misbehavior, by using a more aggressive configuration that penalizes the misbehaving station. We show that the proposed algorithm guarantees global stability while providing good response times. By conducting an analysis of the effectiveness of the algorithm against selfish behaviors, we also show that a misbehaving station cannot obtain any gain by deviating from the algorithm. Simulation results confirm that the proposed algorithm optimizes throughput performance while discouraging selfish behavior. We also present an experimental prototype of the proposed algorithm demonstrating that it can be implemented on commodity hardware.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know