Global stability analysis of azimuthal oscillations in hall thrusters
IEEE Transactions on Plasma Science, ISSN: 0093-3813, Vol: 43, Issue: 1, Page: 149-157
2015
- 13Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A linearized time-dependent 2-D (axial and azimuthal) fluid model of the Hall thruster discharge is presented. This model is used to carry out a global stability analysis of the plasma response, as opposed to the more common local stability analyses. Experimental results indicate the existence of low-frequency long-wave-length azimuthal oscillations in the direction of the E $\times $ B drift, usually referred to as spokes. The present model predicts the presence of such oscillations for typical Hall thruster conditions with a frequency and a growth rate similar to those found in experiments. Moreover, the comparison between the simulated spoke and the simulated breathing mode, a purely axial low-frequency oscillation typical in Hall thrusters, shows similar features in them. Additionally, the contribution of this azimuthal oscillation to electron conductivity is evaluated tentatively by computing the equivalent anomalous diffusion coefficient from the linear oscillations. The results show a possible contribution to anomalous diffusion in the rear part of the thruster.
Bibliographic Details
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know