WATI: Warning of Traffic Incidents for Fuel Saving
Mobile Information Systems, ISSN: 1875-905X, Vol: 2016, Page: 1-16
2016
- 8Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Traffic incidents (heavy traffic, adverse weather conditions, and traffic accidents) cause an increase in the frequency and intensity of the acceleration and deceleration. The result is a very significant increase in fuel consumption. In this paper, we propose a solution to reduce the impact of such events on energy consumption. The solution detects the traffic incidents based on measured telemetry data from vehicles and the different driver profiles. The proposal takes into account the rolling resistance coefficient, the road slope angle, and the vehicles speeds, from vehicles which are on the scene of the traffic incident, in order to estimate the optimal deceleration profile. Adapted advice and feedback are provided to the drivers in order to appropriately and timely release the accelerator pedal. The expert system is implemented on Android mobile devices and has been validated using a dataset of 150 tests using 15 different drivers. The main contribution of this paper is the proposal of a system to detect traffic incidents and provide an optimal deceleration pattern for the driver to follow without requiring sensors on the road. The results show an improvement on the fuel consumption of up to 13.47%.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84960157880&origin=inward; http://dx.doi.org/10.1155/2016/3091516; http://www.hindawi.com/journals/misy/2016/3091516/; http://downloads.hindawi.com/journals/misy/2016/3091516.pdf; http://downloads.hindawi.com/journals/misy/2016/3091516.xml; https://dx.doi.org/10.1155/2016/3091516; https://www.hindawi.com/journals/misy/2016/3091516/
Hindawi Limited
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know