Optimal economic dispatch of hybrid microgrids integrating Energy Storage Systems with Grid-Forming Converters
Renewable Energy and Power Quality Journal, ISSN: 2172-038X, Vol: 20, Page: 757-762
2022
- 1Citations
- 8Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
New control strategies based on Grid-Forming converters make possible the operation of isolated microgrids without the support of synchronous generation. This paper proposes an Energy Management System algorithm that optimizes the operation of a microgrid, maximizing the integration of renewable energy and considering the possibility of disconnecting all synchronous generators. The algorithm is applied to a microgrid modelled with real data and two economic dispatch strategies are analysed: the first requires keeping at least one synchronous generator connected to provide frequency regulation following standard practice; and the second considers the disconnection of all conventional generation relying on the capabilities of Grid-Forming converters when sufficient reserve is available. The results show that the proposed strategy reduces the operational cost of the system, as well as solar PV curtailment and diesel consumption.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know