Worst-case disturbances for time-varying systems with application to flexible aircraft
Journal of Guidance, Control, and Dynamics, ISSN: 1533-3884, Vol: 42, Issue: 6, Page: 1261-1271
2019
- 18Citations
- 13Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The aim of this Paper is to propose a method for constructing worst-case disturbances to analyze the performance of linear time-varying systems on a finite time horizon. This is primarily motivated by the goal of analyzing flexible aircraft, which are more realistically described as time-varying systems, but the same framework can be applied to other fields in which this feature is relevant. The performance is defined by means of a generic quadratic cost function, and the main result consists of a numerical algorithm to compute the worst-case signal verifying that a given performance objective is not achieved. The developed algorithm employs the solution to a Riccati differential equation associated with the cost function. Theoretically, the signal can also be obtained by simulating the related Hamiltonian dynamics, but this does not represent a numerically reliable strategy, as commented in the Paper. The applicability of the approach is demonstrated with a case study consisting of a flexible aircraft subject to gust during a flight-test maneuver.
Bibliographic Details
American Institute of Aeronautics and Astronautics (AIAA)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know