STIRLING POLYNOMIALS: IN SEVERAl INDETERMINATES
Stirling Polynomials: In Several Indeterminates, Page: 1-160
2021
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Mentions1
- References1
- Wikipedia1
Book Description
The classical exponential polynomials, today commonly named after E.,T. Bell, have a wide range of remarkable applications in Combinatorics, Algebra, Analysis, and Mathematical Physics. Within the algebraic framework presented in this book they appear as structural coefficients in finite expansions of certain higher-order derivative operators. In this way, a correspondence between polynomials and functions is established, which leads (via compositional inversion) to the specification and the effective computation of orthogonal companions of the Bell polynomials. Together with the latter, one obtains the larger class of multivariate `Stirling polynomials'. Their fundamental recurrences and inverse relations are examined in detail and shown to be directly related to corresponding identities for the Stirling numbers. The following topics are also covered: polynomial families that can be represented by Bell polynomials; inversion formulas, in particular of Schlömilch-Schläfli type; applications to binomial sequences; new aspects of the Lagrange inversion, and, as a highlight, reciprocity laws, which unite a polynomial family and that of orthogonal companions. Besides a Mathematica(R) package and an extensive bibliography, additional material is compiled in a number of notes and supplements.
Bibliographic Details
9783832586058; 9783832552503
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know