Fragile histidine triad expression delays tumor development and induces apoptosis in human pancreatic cancer
Cancer Research, ISSN: 0008-5472, Vol: 61, Issue: 12, Page: 4827-4836
2001
- 103Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The fragile histidine triad (FHIT) gene is a tumor suppressor gene that is altered by deletion in a large fraction of human tumors, including pancreatic cancer. To evaluate the potential of FHIT gene therapy, we developed recombinant adenoviral and adenoassociated viral (AAV) FHIT vectors and tested these vectors in vitro and in viva for activity against human pancreatic cancer cells. Our data show that viral FHIT gene delivery results in apoptosis by activation of the caspase pathway. Furthermore, Fhit overexpression enhances the susceptibility of pancreatic cancer cells to exogenous inducers of apoptosis. In viva results show that FHIT gene transfer delays tumor growth and prolongs survival in a murine model mimicking human disease.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know