Correlating overrepresented upstream motifs to gene expression: A computational approach to regulatory element discovery in eukaryotes
BMC Bioinformatics, ISSN: 1471-2105, Vol: 3, Issue: 1, Page: 7
2002
- 32Citations
- 61Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations32
- Citation Indexes32
- 32
- CrossRef24
- Captures61
- Readers61
- 61
Article Description
Background: Gene regulation in eukaryotes is mainly effected through transcription factors binding to rather short recognition motifs generally located upstream of the coding region. We present a novel computational method to identify regulatory elements in the upstream region of eukaryotic genes. The genes are grouped in sets sharing an overrepresented short motif in their upstream sequence. For each set, the average expression level from a microarray experiment is determined: If this level is significantly higher or lower than the average taken over the whole genome, then the overerpresented motif shared by the genes in the set is likely to play a role in their regulation. Results: The method was tested by applying it to the genome of Saccharomyces cerevisiae, using the publicly available results of a DNA microarray experiment, in which expression levels for virtually all the genes were measured during the diauxic shift from fermentation to respiration. Several known motifs were correctly identified, and a new candidate regulatory sequence was determined. Conclusions: We have described and successfully tested a simple computational method to identify upstream motifs relevant to gene regulation in eukaryotes by studying the statistical correlation between overepresented upstream motifs and gene expression levels. © 2002 Caselle et al; licensee BioMed Central Ltd.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know