Migration of human inflammatory cells into the lung results in the remodeling of arachidonic acid into a triglyceride pool
Journal of Experimental Medicine, ISSN: 0022-1007, Vol: 182, Issue: 5, Page: 1181-1190
1995
- 80Citations
- 36Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations80
- Citation Indexes80
- 80
- CrossRef67
- Captures36
- Readers36
- 36
Article Description
Increasing evidence suggests that the metabolism of arachidonic acid (AA) may be different in inflammatory cells isolated from blood or migrating into tissues. To explore the possibility that changes in AA metabolism between blood and tissue inflammatory cells could be due in part to a different content or distribution of AA in glycerolipid classes, we studied these parameters in six human inflammatory cells isolated from blood (eosinophils, monocytes, neutrophils, and platelets) or from the lung tissue (mast cells and macrophages). Lung cells generally had a higher total cellular content of AA than that found in the blood cells. In addition, both mast cells and macrophages had a large endogenous pool of AA associated with triglycerides (TG), containing 45 and 22% of their total cellular AA, respectively. To address the hypothesis that cells migrating into the lung had a higher cellular level of AA and a larger AA pool in TG, we studied neutrophils isolated from the bronchoalveolar lavage (BAL) of patients with adult respiratory distress syndrome. BAL neutrophils had a fourfold increase in cellular AA as compared with blood neutrophils and contained 25% of their AA in TG versus 3% in blood neutrophils. BAL neutrophils also had a higher number of cytoplasmic lipid bodies (8 ± 3/cell) relative to blood neutrophils (2 ± 1/cell). High concentrations of free AA were also found in the cell-free BAL fluid of adult respiratory distress syndrome patients. To explore whether changes in BAL neutrophils may be due to the exposure of the cells to high concentrations of exogenous AA found in BAL, we incubated blood neutrophils in culture with AA (10-100 μM) for 24 h. Neutrophils supplemented with AA had a 10-fold increase in the amount of AA associated with TG and a sixfold increase in the number of lipids bodies. In addition, supplementation with AA induced a dose-dependent formation of hypodense cells. Taken together, these data indicate that human inflammatory cells undergo a fundamental and consistent remodeling of AA pools as they mature or enter the lung from the blood. These biochemical and morphological changes can be mimicked in vitro by exposing the cells to high levels of AA. This mechanism may be responsible for the changes in AA mobilization and eicosanoid metabolism observed in tissue inflammatory cells.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0028883446&origin=inward; http://dx.doi.org/10.1084/jem.182.5.1181; http://www.ncbi.nlm.nih.gov/pubmed/7595189; https://rupress.org/jem/article/182/5/1181/25736/Migration-of-human-inflammatory-cells-into-the; http://www.jem.org/cgi/doi/10.1084/jem.182.5.1181; http://jem.rupress.org/content/182/5/1181
Rockefeller University Press
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know