Estimating the Probability of Clonal Relatedness of Pairs of Tumors in Cancer Patients
2017
- 304Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage304
- Downloads248
- Abstract Views56
Article Description
Next generation sequencing panels are being used increasingly in cancer research to study tumor evolution. A specific statistical challenge is to compare the mutational profiles in different tumors from a patient to determine the strength of evidence that the tumors are clonally related, i.e. derived from a single, founder clonal cell. The presence of identical mutations in each tumor provides evidence of clonal relatedness, although the strength of evidence from a match is related to how commonly the mutation is seen in the tumor type under investigation. This evidence must be weighed against the evidence in favor of independent tumors from non-matching mutations. In this article we frame this challenge in the context of diagnosis using a novel random effects model. In this way, by analyzing a set of tumor pairs, we can estimate the proportion of cases that are clonally related in the sample as well as the individual diagnostic probabilities for each case. The method is illustrated using data from a study to determine the clonal relationship of lobular carcinoma in situ with subsequent invasive breast cancers where each tumor in the pair was subjected to whole exome sequencing. The statistical properties of the method are evaluated using simulations, demonstrating that the key model parameters are estimated with only modest bias in small samples.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know