Targeted Data Adaptive Estimation of the Causal Dose Response Curve
2013
- 1,182Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,182
- Downloads609
- Abstract Views573
Article Description
Estimation of the causal dose-response curve is an old problem in statistics. In a non parametric model, if the treatment is continuous, the dose-response curve is not a pathwise differentiable parameter, and no root-n-consistent estimator is available. However, the risk of a candidate algorithm for estimation of the dose response curve is a pathwise differentiable parameter, whose consistent and efficient estimation is possible. In this work, we review the cross validated augmented inverse probability of treatment weighted estimator (CV A-IPTW) of the risk, and present a cross validated targeted minimum loss based estimator (CV-TMLE) counterpart. These estimators are proven consistent an efficient under certain consistency and regularity conditions on the initial estimators of the outcome and treatment mechanism. We also present a methodology that uses these estimated risks to select among a library of candidate algorithms. These selectors are proven optimal in the sense that they are asymptotically equivalent to the oracle selector under certain consistency conditions on the estimators of the treatment and outcome mechanisms. Because the CV-TMLE is a substitution estimator, it is more robust than the CV-AIPTW against empirical violations of the positivity assumption. This and other small sample size differences between the CV-TMLE and the CV-A-IPTW are explored in a simulation study.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know