Equivalent Kernels of Smoothing Splines in Nonparametric Regression for Clustered/Longitudinal Data
2003
- 1,821Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,821
- Abstract Views1,571
- 1,571
- Downloads250
Article Description
We compare spline and kernel methods for clustered/longitudinal data. For independent data, it is well known that kernel methods and spline methods are essentially asymptotically equivalent (Silverman, 1984). However, the recent work of Welsh, et al. (2002) shows that the same is not true for clustered/longitudinal data. First, conventional kernel methods fail to account for the within- cluster correlation, while spline methods are able to account for this correlation. Second, kernel methods and spline methods were found to have different local behavior, with conventional kernels being local and splines being non-local. To resolve these differences, we show that a smoothing spline estimator is asymptotically equivalent to a recently proposed seemingly unrelated kernel estimator of Wang (2003) for any working covariance matrix. To gain insight into this asymptotic equivalence, we show that both the seemingly unrelated kernel estimator and the smoothing spline estimator using any working covariance matrix can be obtained iteratively by applying conventional kernel or spline smoothing to pseudo-observations. This result allows us to study the asymptotic properties of the smoothing spline estimator by deriving its asymptotic bias and variance. We show that smoothing splines are asymptotically consistent for an arbitrary working covariance and have the smallest variance when assuming the true covariance. We further show that both the seemingly unrelated kernel estimator and the smoothing spline estimator are nonlocal (unless working independence is assumed) but have asymptotically negligible bias. Their finite sample performance is compared through simulations. Our results justify the use of efficient, non-local estimators such as smoothing splines for clustered/longitudinal data.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know