Statistical Analysis of Air Pollution Panel Studies: An Illustration
2006
- 2,011Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage2,011
- Abstract Views1,499
- 1,499
- Downloads512
Article Description
The panel study design is commonly used to evaluate the short-term health effects of air pollution. Standard statistical methods for analyzing longitudinal data are available, but the literature reveals that the techniques are not well understood by practitioners. We illustrate these methods using data from the 1999 to 2002 Seattle panel study. Marginal, conditional, and transitional approaches for modeling longitudinal data are reviewed and contrasted with respect to their parameter interpretation and methods for accounting for correlation and dealing with missing data. We also discuss and illustrate techniques for controlling for time-dependent and time-independent confounding, and for exploring and summarizing panel study data. Notes on available software are included in the appendix.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know