A Comparison of Decision Tree with Logistic Regression Model for Prediction of Worst Non-Financial Payment Status in Commercial Credit
2017
- 4,852Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage4,852
- Downloads4,346
- 4,346
- Abstract Views506
Article Description
Credit risk prediction is an important problem in the financial services domain. While machine learning techniques such as Support Vector Machines and Neural Networks have been used for improved predictive modeling, the outcomes of such models are not readily explainable and, therefore, difficult to apply within financial regulations. In contrast, Decision Trees are easy to explain, and provide an easy to interpret visualization of model decisions. The aim of this paper is to predict worst non-financial payment status among businesses, and evaluate decision tree model performance against traditional Logistic Regression model for this task. The dataset for analysis is provided by Equifax and includes over 300 potential predictors from more than 11 million unique businesses. After a data discovery phase, including imputation, cleaning, and transforming potential predictors, Decision Tree and Logistic Regression models were built on the same finalized analysis dataset. Evaluating the models based on ROC index, and Kolmogorov-Smirnov statistic, Decision Tree performed as well as the Logistic Regression model.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know