Sub pixel analysis and processing of sensor data for mobile target intelligence information and verification
2011
- 132Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage132
- Downloads128
- Abstract Views4
Thesis / Dissertation Description
This dissertation introduces a novel process to study and analyze sensor data in order to obtain information pertaining to mobile targets at the sub-pixel level. The process design is modular in nature and utilizes a set of algorithmic tools for change detection, target extraction and analysis, super-pixel processing and target refinement. The scope of this investigation is confined to a staring sensor that records data of sub-pixel vehicles traveling horizontally across the ground. Statistical models of the targets and background are developed with noise and jitter effects. Threshold Change Detection, Duration Change Detection and Fast Adaptive Power Iteration (FAPI) Detection techniques are the three methods used for target detection. The PolyFit and FermiFit are two tools developed and employed for target analysis, which allows for flexible processing. Tunable parameters in the detection methods, along with filters for false alarms, show the adaptability of the procedures. Super-pixel processing tools are designed, and Refinement Through Tracking (RTT) techniques are investigated as post-processing refinement options. The process is tested on simulated datasets, and validated with sensor datasets obtained from RP Flight Systems, Inc.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know