Investigation of Small Molecules as Periplasmic Chaperone Inhibitors Using In Silico and In VivoMethods
2016
- 7Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage7
- Abstract Views7
Poster Description
The proper folding of many outer membrane proteins of E. Coli depends on the activity of the periplasmic chaperones SurA, Skp, and DegP. The importance of chaperones in maintaining the periplasmic proteome suggests small molecules that bind to and inhibit the function of these chaperones could results in inhibited bacterial growth. Our goal is to understand the binding mechanism of not only small molecules but also the client proteins with SurA and other periplasmic chaperones through protein-ligand docking. We used these docking predictions to find drug candidates using virtual screening, and we have begun to test these most promising small molecules through assessment of their bacterial lethality in vivo.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know