Finite Factors of Bernoulli Schemes and Distinguishing Labelings of Directed Graphs
2012
- 183Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage183
- Downloads156
- Abstract Views27
Article Description
A labeling of a graph is a function from the vertices of the graph to some finite set. In 1996, Albertson and Collins defined distinguishing labelings of undirected graphs. Their definition easily extends to directed graphs. Let G be a directed graph associated to the k -block presentation of a Bernoulli scheme X . We determine the automorphism group of G , and thus the distinguishing labelings of G . A labeling of G defines a finite factor of X . We define demarcating labelings and prove that demarcating labelings define finitarily Markovian finite factors of X . We use the Bell numbers to find a lower bound for the number of finitarily Markovian finite factors of a Bernoulli scheme. We show that demarcating labelings of G are distinguishing.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know