Assessment of Fluid Imaging for Determination of Diatom Assemblage Composition and Biometrics of Southern Ocean Sediment
2017
- 306Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage306
- Downloads232
- Abstract Views74
Thesis / Dissertation Description
Diatoms are important ecologic indicators whose assemblage, chemistry, and valve features are reflections of their original environmental conditions. Fossil diatom biometrics are an emerging measurement introduced to supplement our understanding of the hydrographic history of the Southern Ocean. Here, we present a novel method to simultaneously measure fossil diatom assemblage and biometrics using a FlowCam, an instrument combining features from a flow cytometer and microscopic camera. It offers, computerized automatic identification to supplement manual, visual identifications, leading to increased counts and biometric measurements. To assess the viability of the FlowCam as a paleoceanographic tool, a FlowCam measured data set was compared to previously published diatom assemblage and biometric data generated by traditional microscopic methods from a Southern Ocean sediment core. Diatom assemblages and the biometric lengths of Fragilariopsis kerguelensis measured with the FlowCam showed similar trends to those produced by traditional microscopy. The biggest difference was the relative occurrence of Eucampia antarctica, which was observed more frequently using the FlowCam. The high biometric data output from the FlowCam was used to determine an empirically derived, minimum sample count and confidence intervals for future best practices.
Bibliographic Details
University of Rhode Island
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know