El Nino-Southern Oscillation-related ocean-atmosphere coupling in the western equatorial Pacific
Journal of Geophysical Research: Oceans, ISSN: 2169-9291, Vol: 103, Issue: C9, Page: 18635-18648
1998
- 23Citations
- 1,290Usage
- 15Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes23
- 23
- CrossRef16
- Usage1,290
- Downloads1,234
- Abstract Views56
- Captures15
- Readers15
- 15
Article Description
Using 43 years of Comprehensive Ocean-Atmosphere Data Set and related data for the period 1950-1992, an examination is made into the regional dependence of ocean-atmosphere coupling in relation to the El Nino-Southern Oscillation (ENSO). The cross correlation between sea surface temperature (SST) and sea level pressure (SLP) anomalies over the global tropics shows two patterns of significant negative correlation consistent with a local hydrostatic response of SLP to SST: (1) the eastern Pacific, where the correlation is symmetric about and largest on the equator, and (2) the western Pacific, where symmetric regions of negative correlation are found off the equator, separated by a region of positive correlation on the equator. Anomalies within these two patterns vary out of phase with each other. While the SLP anomalies on both sides of the basin are of similar magnitude, the SST anomalies in the east are much larger than those in the west. Despite this disparity in the SST anomaly magnitudes between the eastern and western Pacific we argue that the ocean-atmosphere couplings in the western and west-central Pacific are important for ENSO. The off-equator SST anomalies in the west enhance the SLP anomalies there, and they appear to initiate easterly wind anomalies over the far western Pacific during the peak El Nino phase of ENSO. As these easterlies evolve, their effect upon the ocean tends to oppose that of the westerly wind anomalies found over the west-central Pacific. These competing effects suggest a mechanism that may contribute to coupled ocean-atmosphere system oscillations. The west-central equatorial Pacific (the region separating the eastern and western patterns), while exhibiting large momentum and heat flux exchanges, shows minimum correlation between SST and SLP. Thus neither the SST and SLP anomaly magnitudes nor the correlation between them is alone indicative of ocean-atmosphere coupling, and the regional dependence for such coupling in relation to ENSO appears to be more complicated than mechanistic interpretations of ENSO would suggest.
Bibliographic Details
https://scholarcommons.usf.edu/msc_facpub/120; https://scholarcommons.usf.edu/msc_facpub/383; https://digitalcommons.usf.edu/msc_facpub/120; https://digitalcommons.usf.edu/msc_facpub/383
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=0032529795&origin=inward; http://dx.doi.org/10.1029/98jc01464; https://agupubs.onlinelibrary.wiley.com/doi/10.1029/98JC01464; http://doi.wiley.com/10.1029/98JC01464; http://www.agu.org/journals/jc/v103/iC09/98JC01464/98JC01464.pdf; https://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1029%2F98JC01464; https://scholarcommons.usf.edu/msc_facpub/120; https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1119&context=msc_facpub; https://scholarcommons.usf.edu/msc_facpub/383; https://scholarcommons.usf.edu/cgi/viewcontent.cgi?article=1383&context=msc_facpub; https://digitalcommons.usf.edu/msc_facpub/120; https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1119&context=msc_facpub; https://digitalcommons.usf.edu/msc_facpub/383; https://digitalcommons.usf.edu/cgi/viewcontent.cgi?article=1383&context=msc_facpub; http://onlinelibrary.wiley.com/doi/10.1029/98JC01464/epdf; https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/98JC01464; https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/98JC01464; https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/98JC01464
American Geophysical Union (AGU)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know