SmallSat Platform Development for Coast Guard Academy Collaborative Space-Based Research
2020
- 287Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage287
- Downloads154
- Abstract Views133
Artifact Description
Collaborations utilizing small spacecraft in near earth orbit between the U. S. Coast Guard Academy (CGA), Naval Research Lab (NRL), the U. S. Naval Academy (USNA), and the Air Force Institute of Technology (AFIT) have initiated scientific and engineering space-based experiments. Sourced opportunities like the VaSpace ThinSat missions have provided a platform for payload, sensor, and experiment development that would have otherwise been resource prohibitive. We have constructed an impedance probe payload for launch in Fall 2020 derived from the existing ‘Space PlasmA Diagnostic suitE’ (SPADE) mission operating from NASA’s International Space Station. Currently both space and laboratory plasmas are investigated with AC impedance measurements using a radio frequency antenna. Plasma electron density data collected from the ThinSat will however use an innovative surface-mounted dipole antenna to gather the required sheath-plasma and plasma resonance information. On that same launch, a compact multispectral ‘Pixel Sensor’ with a 450 nm – 1000 nm spectral range will add to the existing Inertial Motion Unit, Temperature Sensor, Infrared Sensor, and Energetic Particle Detector baselined in previous launches. Our engineering team has begun to design, build, and test a solar panel deployment and de-orbiting mechanism for a CubeSat with the USNA’s Aerospace Engineering Department that utilizes a miniature motor for deployment actuation. For the motor to produce the required torque, a gear ratio of 20:1 is necessary. Impedance probe optimization, de-orbiting mechanism automation, and data collection obstacles, solutions, and procedures will be reported.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know