Subgroup-specific dose finding in phase I clinical trials based on time to toxicity allowing adaptive subgroup combination
Pharmaceutical Statistics, ISSN: 1539-1612, Vol: 17, Issue: 6, Page: 734-749
2018
- 23Citations
- 1Usage
- 13Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations23
- Citation Indexes23
- 23
- CrossRef15
- Usage1
- Abstract Views1
- Captures13
- Readers13
- 13
Article Description
A Bayesian design is presented that does precision dose finding based on time to toxicity in a phase I clinical trial with two or more patient subgroups. The design, called Sub-TITE, makes sequentially adaptive subgroup-specific decisions while possibly combining subgroups that have similar estimated dose-toxicity curves. Decisions are based on posterior quantities computed under a logistic regression model for the probability of toxicity within a fixed follow-up period, as a function of dose and subgroup. Similarly to the time-to-event continual reassessment method (TITE-CRM, Cheung and Chappell), the Sub-TITE design downweights each patient's likelihood contribution using a function of follow-up time. Spike-and-slab priors are assumed for subgroup parameters, with latent subgroup combination variables included in the logistic model to allow different subgroups to be combined for dose finding if they are homogeneous. This framework can be used in trials where clinicians have identified patient subgroups but are not certain whether they will have different dose-toxicity curves. A simulation study shows that, when the dose-toxicity curves differ between all subgroups, Sub-TITE has superior performance compared with applying the TITE-CRM while ignoring subgroups and has slightly better performance than applying the TITE-CRM separately within subgroups or using the two-group maximum likelihood approach of Salter et al that borrows strength among the two groups. When two or more subgroups are truly homogeneous but differ from other subgroups, the Sub-TITE design is substantially superior to either ignoring subgroups, running separate trials within all subgroups, or the maximum likelihood approach of Salter et al. Practical guidelines and computer software are provided to facilitate application.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85053231503&origin=inward; http://dx.doi.org/10.1002/pst.1891; http://www.ncbi.nlm.nih.gov/pubmed/30112806; https://onlinelibrary.wiley.com/doi/10.1002/pst.1891; https://digitalscholar.lsuhsc.edu/llcc_facpubs/42; https://digitalscholar.lsuhsc.edu/cgi/viewcontent.cgi?article=1041&context=llcc_facpubs; https://dx.doi.org/10.1002/pst.1891
Wiley
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know