Transport Controlled Pattern Photopolymerization in a Single-Component System
Macromolecules, Vol: 37, Issue: 10, Page: 3792-3798
2004
- 1Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1
- Abstract Views1
Article Description
The purpose of the present paper is to extend the concept of pattern photopolymerization-induced phase separation of a binary blend to a single-component system containing pure photoreactive monomers with a minute level of photoinitiators. The patterning formation process was simulated in the framework of Cahn−Hilliard equation coupled with the photoreaction kinetic equation. Unlike binary systems undergoing photopolymerization-induced phase separation driven by thermodynamic force, the mechanism of pattern formation in the single-component system is essentially a photoreaction-induced transport phenomenon. Of particular interest is the observation of polymer concentration profiles evolving from a sinusoidal wave to various truncated ones. On the basis of two-wave interference optics, the microchannel layers have been fabricated. Resultant morphology was characterized using optical and atomic force microscopes. A two-dimensional light scattering device was utilized to study the diffraction patterns from the fabricated microchannel layers. The observed concentration profiles were compared with the theoretical predictions, and good agreement was found.
Bibliographic Details
https://ideaexchange.uakron.edu/polymerengin_ideas/941; http://ideaexchange.uakron.edu/polymerengin_ideas/941
https://ideaexchange.uakron.edu/polymerengin_ideas/941; https://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1940&context=polymerengin_ideas; http://ideaexchange.uakron.edu/polymerengin_ideas/941; http://ideaexchange.uakron.edu/cgi/viewcontent.cgi?article=1940&context=polymerengin_ideas
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know