Molecular Mechanisms for Conformational and Rheological Responses of Entangled Polymer Melts to Startup Shear
Macromolecules, Vol: 48, Issue: 12, Page: 4164-4173
2015
- 13Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage13
- Abstract Views13
Article Description
In this work, we have carried out Brownian dynamics simulation to describe the detailed characteristics of conformational and rheological responses to startup shear. In addition to the evaluation of the contour length of the primitive chain, the state of chain entanglement and the first normal stress difference as a function of strain, three methods are applied to determine the time-dependent shear stress. Our results show significant stretching of the primitive chain up to many Rouse times, followed by retraction, as the primary origin of stress overshoot for deformation rates lower than the reciprocal of the Rouse time but higher than the reciprocal of the reptation time. The analysis of such results reveals heterogeneous local chain stretching, demonstrating the coupling between stretching and orientation that extends to times considerably longer than the Rouse time. Explicit comparison between the simulation and the theoretical description from the GLaMM theory shows marked differences. For example, the simulation indicates a slower decline in the number of original entanglements than that at equilibrium up to many Rouse times whereas the GLaMM theory predicts a faster decrease. Moreover, contrary to the simulation that depicts a nearly constant slope in the stress–strain relationship during startup shear, the GLaMM theory shows an immediate and precipitous strain softening.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know