Design of Tissue-specific Cellular Microenvironments for Adipose-derived Stromal Cell Culture and Delivery
2019
- 459Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage459
- Downloads269
- Abstract Views190
Article Description
The development of in vitro cell culture models that investigate tissue-specific effects of the extracellular matrix (ECM) on stem/progenitor cell lineage-commitment can contribute towards the design of improved cell delivery strategies. This thesis developed processing methods that conserved ECM bioactivity to generate well-characterized 2- and 3-D culture platforms that facilitated the evaluation of ECM composition on the adipogenic and osteogenic differentiation of human adipose-derived stromal cells (ASCs). Initial work compared α-amylase and pepsin digestion as methods to fabricate ECM coatings. The effects of enzyme processing and ECM composition were explored using human decellularized adipose tissue (DAT) and bovine tendon collagen as matrix sources. The α-amylase-digested coatings were softer and more stable, with a complex composition and fibrillar architecture. ASCs cultured on α-amylase-digested ECM retained a spindle-shaped morphology, with enhanced proliferation on the α-amylase-digested DAT. Further, the α-amylase-digested DAT enhanced adipogenesis, based on adipogenic gene expression, glycerol-3-phosphate dehydrogenase (GPDH) enzyme activity, and perilipin staining under differentiation conditions. To further evaluate the effects of tissue-specific ECM composition on ASC differentiation, bovine trabecular bone was explored as a compositionally distinct ECM source. A detergent-free protocol was developed for obtaining decellularized trabecular bone (DTB). Immunohistochemical and biochemical techniques were used to compare the composition of the DTB and DAT, demonstrating higher levels of glycosaminoglycans in the DTB and enhanced expression of basement membrane proteins (collagen IV, laminin, collagen VI) in the DAT. To investigate the potential of applying a tissue-specific approach within a 3-D culture system, cryo-milled DAT or DTB particles were incorporated within methacrylated chondroitin sulphate (MCS) hydrogels. ASC viability, adipogenesis and osteogenesis were assessed in the MCS+DAT, MCS+DTB and MCS alone. The findings indicated that the incorporation of DAT provided an adipo-conductive microenvironment, as seen by enhanced adipogenic gene expression, GPDH enzyme activity and intracellular lipid accumulation under differentiation conditions. The preliminary osteogenic data suggested that the DTB may have osteo-inductive effects, as seen by early stage osteogenic gene expression (OPN and ON) under proliferation conditions. ii Overall, this thesis provided a body of evidence supporting that tissue-specific ECM composition can be harnessed in biomaterials design to promote the lineage-specific differentiation of ASCs.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know