PSOEM-LSSVM forecasting model for the transmission lines icing
Journal of Electric Power Science and Technology, ISSN: 1673-9140, Vol: 35, Issue: 6, Page: 131-137
2020
- 10Citations
- 20Usage
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations10
- Citation Indexes10
- 10
- Usage20
- Downloads17
- Abstract Views3
Article Description
According to the fact that the existing icing prediction methods has a slow convergence speed and poor prediction accuracy, a method based on particle swarm optimization with extended memory (PSOEM) is proposed under the consideration of the icing thickness influence to optimize parameters. It is applied to the least squares support vector machine (LSSVM) to predict icing thickness. The proposed method introduces an extended memory factor into the traditional particle swarm algorithm to make the particles have stronger search capabilities, thereby speeding up convergence and improving prediction accuracy. Finally, the actual line icing data is utilized to test the accuracy of the prediction model. It is shown that the average relative error of the prediction model based on PSOEM-LSSVM is less than 3%. Compared with other models, the prediction effect is the best.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know