PlumX Metrics
Embed PlumX Metrics

Utilizing Large Language Models to Synthesize Product Desirability Datasets

2024
  • 0
    Citations
  • 14
    Usage
  • 0
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Conference Paper Description

This research explores the application of large language models (LLMs) to generate synthetic datasets for Product Desirability Toolkit (PDT) testing, a key component in evaluating user sentiment and product experience. Utilizing gpt-4o-mini, a cost-effective alternative to larger commercial LLMs, three methods, Word+Review, Review+Word, and Supply-Word, were each used to synthesize 1000 product reviews. The generated datasets were assessed for sentiment alignment, textual diversity, and data generation cost. Results demonstrated high sentiment alignment across all methods, with Pearson correlations ranging from 0.93 to 0.97. Supply-Word exhibited the highest diversity and coverage of PDT terms, although with increased generation costs. Despite minor biases toward positive sentiments, in situations with limited test data, LLM-generated synthetic data offers significant advantages, including scalability, cost savings, and flexibility in dataset production.

Bibliographic Details

John D Hastings; Sherri Weitl-Harms; Joseph Doty; Zachary L Myers; Warren Thompson

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know