A Consent Framework for the Internet of Things in the GDPR Era
2021
- 970Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage970
- Abstract Views490
- Downloads480
Thesis / Dissertation Description
The Internet of Things (IoT) is an environment of connected physical devices and objects that communicate amongst themselves over the internet. The IoT is based on the notion of always-connected customers, which allows businesses to collect large volumes of customer data to give them a competitive edge. Most of the data collected by these IoT devices include personal information, preferences, and behaviors. However, constant connectivity and sharing of data create security and privacy concerns. Laws and regulations like the General Data Protection Regulation (GDPR) of 2016 ensure that customers are protected by providing privacy and security guidelines to businesses. Data subjects (users) should be informed on what information is being collected about them and if they consent or not. This dissertation proposes a consent framework that consists of data collection, consent collection, consent management, consent enforcement, and consent auditing. In the framework, there are GDPR requirements embedded in different components of the framework. The consent framework can help organizations to be GDPR consent compliant. In our evaluation of the solution, the results show that our solution has coverage over GDPR consent based on our use case. Our main contributions are the consent framework, consent manager, and the consent auditing tool.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know