Exploring the role of local adaptation in the response of Maianthemum canadense to climate warming
2017
- 261Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage261
- Downloads177
- Abstract Views84
Thesis / Dissertation Description
By the year 2100, it is projected that average global temperatures will increase by ~4C. Shifts in species distributions have been evidenced as a common response to climate warming across taxonomic groups with migration to higher latitudes and elevations in response to warming being common. Species responses to climate warming can be influenced by the local adaptations of their populations. I hypothesized that populations of M. canadense from warmer locations would respond negatively to warming, while populations from cooler sites would exhibit neutral or positive responses to warming. Maianthemum canadense is a species that is associated with cool, moist microsites across its distribution. To examine the role of local adaptation within the context of projected climate warming across a wide-ranging species in the Appalachian region, I grew Maianthemum canadense individuals in controlled-environment growth chambers that simulated current and future projected average growing season temperatures throughout the sampled range. The individuals were propagated from rhizomes collected from distinct naturally occurring populations of this species in Tennessee, Virginia, Pennsylvania, and New York. As such, populations from warmer locations may already be experiencing the high temperature range limit for this species. I used a two-way factorial design with temperature assigned to growth chambers as main plots and population as a split-plot factor within chambers. Findings suggest that M. canadense does not respond well to warming overall at the species level and that populations in warmer parts of the current range could be most negatively impacted by future climate warming. Since M. canadense is a common understory monocot herb with wide distribution throughout the Appalachian region, and as such, could represent the responses of similar species as a response to future warming.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know