Arctic Sea Ice Classification and Soil Moisture Estimation Using Microwave Sensors
2016
- 155Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage155
- Downloads108
- Abstract Views47
Thesis / Dissertation Description
Spaceborne microwave sensors are capable of estimating various properties of many geophysical phenomena, including the age and extent of Arctic sea ice and the relative soil moisture over land. The measurement and classification of such geophysical phenomena are used to refine climate models, localize and predict drought, and better understand the water cycle. Data from the active Ku-band scatterometers, the Quick Scatterometer (QuikSCAT), and the Oceansat-2 Scatterometer (OSCAT), are here used to classify areas of first-year and multiyear Arctic sea ice using a temporally adaptive threshold on reported radar backscatter values. The result is a 15-year data record of daily ice classification images. An additional ice age data record is produced using the C-band Advanced Scatterometer (ASCAT) and the Special Sensor Microwave Imager Sounder (SSMIS) with an alternate classification methodology based on Bayesian decision theory. The ASCAT/SSMIS classification methodology results in a record which is generally consistent with the QuikSCAT and OSCAT classifications, which conclude in 2014. With multiple ASCAT and SSMIS sensors still operational, the ASCAT/SSMIS ice classifications can continue to be produced into the future. In addition to ice classification, ASCAT is used to estimate the relative surface soil moisture at high-resolution (4.45 — 4.45 km per pixel). The soil moisture estimates are obtained using enhanced resolution image reconstruction techniques and an altered version of the Water Retrieval Package (WARP) algorithm. The high-resolution soil moisture estimates are shown to agree well with the existing lower resolution WARP products while also revealing finer details.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know