Considering Manufacturing in the Design of Thick-Panel Origami Mechanisms
2017
- 1,146Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage1,146
- Downloads824
- Abstract Views322
Thesis / Dissertation Description
Origami has been investigated and demonstrated for engineering applications in recent years. Many techniques for accommodating the thickness of most engineering materials have been developed. In this work, tables comparing performance and manufacturing characteristics are presented. These tables can serve as useful design tools for engineers when selecting an appropriate thickness-accommodation technique for their application. The use of bent sheet metal for panels in thick-origami mechanisms shows promise as a panel design approach that mitigates several trade-offs between performance and manufacturing characteristics. A process is described and demonstrated that can be employed to use sheet metal in designs of origami-adapted mechanisms that utilize specific thickness-accommodation techniques. Data structures based on origami can be useful in the automation of thick-origami mechanism design. The use of such data structures is explained and shown in the context of a program that will automatically create the 3D CAD models and assembly of a thick-origami mechanism using the tapered panels technique based on the input origami crease pattern. Manufacturability in the design of origami-adapted mechanisms is discussed through presenting and examining three examples of origami-adapted mechanisms. As the manufacturability of origami-adapted products is addressed and improved, their robustness will also improve, thereby enabling greater use of origami-adapted design.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know