Pattern recognition for nondestructive evaluation
1991 IEEE Aerospace Applications Conference Digest, Page: 6/1-611
1991
- 29Usage
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage29
- Downloads22
- Abstract Views7
- Captures1
- Readers1
Conference Paper Description
The issues involved in automating nondestructive evaluation (NDE) techniques are outlined. Attention is given to research focused on the application of machine learning techniques to the construction and maintenance of knowledge-based systems which are capable of evaluating the readings from nondestructive tests that have been performed on aircraft components. Preliminary results obtained from this research are described. In particular, the authors discuss the application of a symbolic machine learning algorithm, ID3, to the NDE problem. ID3 has been used by Douglas Aircraft to classify defects in sets of standard NDE reference blocks. Based on the preliminary results, a need for an improved method of distinguishing features in the test waveforms is identified. The authors also outline a feature extraction approach from pattern recognition, called scale-space filtering, which can be used to preprocess data for input into a classification algorithm such as ID3.
Bibliographic Details
http://ieeexplore.ieee.org/document/154534/; http://xplorestaging.ieee.org/ielx2/532/4023/00154534.pdf?arnumber=154534; http://dx.doi.org/10.1109/aero.1991.154534; https://scholarsmine.mst.edu/comsci_facwork/205; https://scholarsmine.mst.edu/cgi/viewcontent.cgi?article=1204&context=comsci_facwork
Institute of Electrical and Electronics Engineers (IEEE)
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know