A Study on the Mechanism of Mitochondrial DNA Loss in aco1 Mutant Cells
2013
- 56Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage56
- Abstract Views56
Lecture / Presentation Description
Aconitase is an enzyme of the Krebs cycle that catalyzes the isomerization of citrate to isocitrate. In addition to its enzymatic activity, Aco1 has been reported to bind to mitochondrial DNA (mtDNA) and mediate its maintenance in the budding yeast S. cerevisiae. In the absence of Aco1, cells rapidly lose mtDNA and become “petite” mutants. The purpose of this study is to uncover the mechanism behind mtDNA loss due to an aco1 deletion mutation. We found that an aco1 mutation activates the mitochondria-to-nucleus retrograde (RTG) signaling pathway, resulting in increased expression of citrate synthases (CIT) through the activation of two transcription factors Rtg1 and Rtg3. Increased activity of CIT leads to increased iron accumulation in cells, which is known to raise reactive oxygen species (ROS). By deleting RTG1, RTG3, genes encoding citrate synthases, or MRS3 and MRS4, encoding two iron transporters in the mitochondrial inner membranes, mtDNA loss can be prevented in aco1 deletion mutant cells. We further show that the loss of SOD1, encoding the cytoplasmic isoform of superoxide dismutase, but not SOD2, encoding the mitochondrial isoform of superoxide dismutase, prevents mtDNA loss in aco1 mutant cells. Altogether, our data suggest that mtDNA loss in aco1 mutant cells is caused by the activation of the RTG pathway and subsequent iron accumulation and toxicity in the mitochondria.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know