Data for: Discovering Gene-Disease Associations with Biomedical Word Embeddings
2020
- 188Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage188
- Views188
Dataset Description
This is the dataset supporting the publication Discovering Gene-Disease Associations with Biomedical Word Embeddings. Finding the right target for a disease is critical in the drug development process. This paper presents a machine learning approach for predicting gene-disease associations that (i) employs biomedical word embeddings as features for a classifier trained on Open Targets Platform (OTP) data that (ii) generalises beyond a specific disease or gene class. We train, evaluate and compare different word embedding models and classifiers for the task at hand. In addition, we validate the approach by training on a past OTP release and show that it can assist in identifying probable positive associations among current low evidence associations, confirmed by a recent OTP release. Furthermore, we train word embedding models on different time slices of biomedical articles from ScienceDirect and demonstrate that the trained classifier predicts associations that have not explicitly b...
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know