FAILURE ANALYSIS OF GAS TURBINE BLADE USING FINITE ELEMENT ANALYSIS
2017
- 740Usage
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Usage740
- Views662
- Downloads78
Dataset Description
This paper presents the failure analysis of the turbine blade of a gas turbine engine 9E GE type, installed in a certain type of simple systems consisting of the gas turbine driving an electrical power generator. A non-linear finite element method was utilized to determine the stress state of the blade segment under operating conditions. High stress zones were found at the region of the lower fir-tree slot, where the failure occurred. A computation was also performed with excessive rotational speed. Attention of this study is devoted to the mechanisms of damage of the turbine blade and also the critical high stress areas.
Bibliographic Details
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know