Carbon Capture by Fossil Fuel Power Plants: An Economic Analysis
SSRN Electronic Journal
2009
- 9Citations
- 5,795Usage
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
For fossil fuel power plants to be built in the future, carbon capture and storage (CCS) technologies offer the potential for significant reductions in CO2 emissions. We examine the break-even value for CCS adoptions, that is, the critical value in the charge for CO2 emissions that would justify investment in CCS capabilities. Our analysis takes explicitly into account that the supply of electricity at the wholesale level (generation) is organized competitively in some U.S. jurisdictions, while in others a regulated utility provides integrated generation and distribution services. For either market structure, we find that emissions charges in the range of $25-$30 per tonne of CO2 would be the break-even value for adopting CCS capabilities at new coal-fired power plants. The corresponding break-even values for natural gas plants are substantially higher, near $60 per tonne. Our break-even estimates serve as a basis for projecting the change in electricity prices once carbon emissions become costly. CCS capabilities effectively put an upper bound on the rise in electricity prices. We estimate this bound to be near 30% at the retail level for both coal and natural gas plants. In contrast to the competitive power supply scenario, however, these price increases materialize only gradually for a regulated utility. The delay in price adjustments reflects that for regulated firms the basis for setting product prices is historical cost, rather than current cost.
Bibliographic Details
http://www.ssrn.com/abstract=1443478; http://dx.doi.org/10.2139/ssrn.1443478; http://www.ssrn.com/abstract=1437237; http://dx.doi.org/10.2139/ssrn.1437237; https://dx.doi.org/10.2139/ssrn.1437237; https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1443478; https://dx.doi.org/10.2139/ssrn.1443478; https://papers.ssrn.com/sol3/papers.cfm?abstract_id=1437237; https://ssrn.com/abstract=1437237; https://ssrn.com/abstract=1443478
Elsevier BV
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know